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Recent human and rodent brain imaging studies have shown that the shape of the brain can be changed by
experience. These mesoscopic alterations in neuroanatomy are hypothesized to be driven by changes at
the level of neuronal processes. To examine whether the shape of the brain changes rapidly, we used MRI
to examine changes in the volume of the hippocampus across the 4–6 day estrous cycle in the female
mouse. It is well known that changing steroid levels across the cycle influence dendritic spine maturation
and alter synapse density in the hippocampus; our results show that the estrous cycle is associated with
approximately 2–3% changes in hippocampal volume as seen by high-resolution ex-vivo MRI. Changes in hip-
pocampal volume are, moreover, associated with a switch between hippocampal and striatal based naviga-
tion strategies in solving the dual choice T-maze in the same mice. A second experiment, using in-vivo
MRI, suggests that these changes in hippocampal volume can occur over a 24 hour period. In summary, we
show that the brain is highly plastic at a mesoscopic level of resolution detectable by MRI, that volumetric
increases and decreases in hippocampal volume follow previously established patterns of changes in
neuropil, and that these changes in volume predict changes in cognition.

© 2013 Elsevier Inc. All rights reserved.
Introduction

There are intriguing indications that the volume and shape of the
human brain can change over short periods of time. Direct evidence
includes increases in local gray matter volume in the parietal and
occipital cortices when learning to juggle (Draganski et al., 2004;
Driemeyer et al., 2008; Scholz et al., 2009) or acquiring similar
dexterity skills (Taubert et al., 2012). There is, however, significant
controversy over the reproducibility of plasticity related brain
changes detected by MRI (Thomas and Baker, 2012); and the under-
lying mechanism is uncertain (Zatorre et al., 2012). Understanding
how the brain changes at a mesoscopic resolution — i.e. at the level
of brain regions and nuclei — is a key challenge for the brain imaging
community, as it will both (i) answer fundamental questions of how
the brain is shaped and how malleable that shape is, and (ii) provide
further understanding of abnormal brain plasticity found in multiple
neurologic and psychiatric diseases.
ren, 25 Orde St., Toronto, ON,

rights reserved.
Part of the answer will come from work in animal models, where
high-field MRI can provide the link between the rich literature of
cellular brain plasticity in model systems and the emerging field of
human systems-level brain plasticity. We have shown, for example,
that 5 days of training mice on the Morris water maze changes the
volume of the hippocampus and striatum by 2–4% as detected by
high-field MRI and correlates with an immunohistochemical stain
for neuronal process remodelling (Lerch et al., 2011b). Similarly,
maze training in the rat has shown diffusion related brain changes
associated with astrocyte immunoreactivity and synapse staining
(Blumenfeld-Katzir et al., 2011; Sagi et al., 2012).

The dominant paradigm in studying mesoscopic brain plasticity has
been to use an external stimulus, such as training onmazes or dexterity
tasks, and use imaging to examine the outcomes of these stimuli on the
brain. Brain plasticity, however, can also occur in response to endoge-
nous signals; to, for example, cycling hormone levels.

Ovarian steroids have been well established to affect the brain
(McEwen and Alves, 1999), in particular the hippocampus with its
high density of estrogen receptors (Woolley, 1998). Estradiol induces
maturation in dendritic spines in the rodent hippocampus, and has
been associated with increases in synaptic markers in rodents and
primates (Spencer et al., 2008a; Woolley and McEwen, 1992). Over
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the approximately 4–6 days of the rodent estrous cycle, synapse
markers peak at proestrus when estradiol levels are high, decline rap-
idly over a 24 hour period as the cycle enters estrus where estradiol
and progesterone levels are low, and then rise gradually over the
next several days in metestrus and diestrus (Spencer et al., 2008a;
Woolley, 1998) (illustrated in Fig. 1a). There is also an intriguing as-
sociation between the estrous cycle and cognition: during proestrus,
when estradiol is high, rats are much more likely to choose a hippo-
campal dependent place strategy to solve a maze than during estrus,
when steroid levels are low and a non-hippocampal response
strategy is more common (Korol and Kolo, 2002; Korol et al., 2004).

In this study we thus set out to address the following hypothesis:
the neuronal alterations known to occur with changing steroid levels
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Fig. 1. An outline of hypotheses and experimental design. As has been repeatedly shown, the
sharp decline in estrus. These changes in steroids affect the morphology of dendritic spin
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and made the correct turn for the food reward, it was considered to be using a place strate
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across the 4–6 day estrous cycle will be associated with changes in
hippocampal volume as seen by MRI between estrous cycle stages.
Furthermore, we expect that these volume changes will be associated
with a concomitant alteration in the cognitive strategy used to solve a
maze, with larger hippocampi during proestrus associated with use of
a place strategy.

Materials and methods

We conducted two experiments. In the first, mice were assessed
for their estrous cycle stage, trained on a T-maze to determine
which cognitive strategy they used to solve the maze, and then
sacrificed and their brains imaged with high-resolution ex-vivo MRI.
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This experiment allowed us to relate hippocampal volume to estrous
cycle stage and cognition. In the second experiment, mice were im-
aged at different stages of the estrous cycle using in-vivo Manganese
Enhanced MRI (MEMRI) to measure hippocampal volume change over
a 24 hour period. Methods and experimental design are illustrated in
Fig. 1. All experiments were approved by the Animal Ethics Committee
of the Toronto Centre for Phenogenomics.

Mice

For the ex-vivo experiment, 39 female C57BL/6 mice, aged
74–95 days, were used during varying stages of their estrous cycle
(proestrus n = 8, estrus n = 9, metestrus n = 13, diestrus n = 9).
For the in-vivo experiment, 20 female C57BL/6 mice were imaged
twice each on post-natal days 77 and 78. On day 77 the estrous cycle
was proestrus n = 5, estrus n = 2, metestrus n = 7, diestrus n = 6.
Mice were obtained through in-house breeding at the Toronto Centre
for Phenogenomics or ordered from Jackson Laboratories.

T-maze habituation

For the first ex-vivo experiment mice were food deprived for
3 days prior to and including the day of testing. They were weighed
each day to ensure that no mice fell below 85% of their initial weight.
For each of the 3 days prior to testing, eachmousewas given 10 minutes
to openly explore the T-maze with food at the arms to allow habituation
of both the maze and food reward. The 20 mice used for the second
in-vivo experiment did not undergo maze habituation, training or
testing.

Maze training

Noldus' Ethovision XT was used to program the protocol for the
T-maze. Mice were trained to enter one of the arms to obtain a food
reward until 9/10 consecutive trials were completed successfully.
Immediately after training, a probe trial was administered in which
the start box was rotated 180 degrees from the original location.
Four spatial cues (triangle, circle, etc.) were placed around the
T-maze apparatus at fixed locations that did not change from initial
training to probe, or between trials with different mice. Response
learning was displayed if the mouse incorrectly made the same direc-
tion turn (i.e. right or left) during the probe trial as during initial
training. Place learning was demonstrated if the mouse made the
correct turn to obtain the food reward, i.e. the opposite turn from
that during initial training. From this behavior we inferred that the
mouse used the spatial cues around the T-maze to navigate to the
baited arm. A second observer, blinded to the estrous stage of the
mice, viewed video recordings of 10 separate probe trials to ensure
inter-rater reliability for cognitive strategy assessment.

Estrous cycle stage identification

To determine the estrous cycle stage of each mouse vaginal secre-
tions were obtained from each mouse. For the ex-vivo study, mice
were staged on each of the 3 days of habituation to increase the
accuracy of the estrous cycle stage identification on the day of train-
ing. On the day of T-maze training, mice were staged after the training
was completed (approximately 2 PM in the afternoon). Mice were
restrained by the tail, upside down, to allow placement of a plastic
pipette tip inside the vagina. The pipette was filled with 30 μL of
saline, and was flushed in and out of the vagina three to five times.
The final flush was placed on a glass slide and viewed under a light
microscope under 10× magnification. Each stage was characterized
by the dominance of a cell type: proestrus was predominantly nucle-
ated epithelial cells; estrus contained anucleated cornified cells;
metestrus contained leukocytes, cornified and nucleated epithelial
cells; diestrus consisted predominantly of leukocytes (McLean et al.,
2012). Staging was identical for the in-vivo study, except that the
vaginal secretions were collected at 10 AM, prior to administration
of anaesthesia and imaging in the afternoon.
Preparation for ex-vivo brain imaging

After estrous cycle staging, mice were anaesthetized by an intraper-
itoneal injection of a ketamine (100 mg/kg) and xylazine (20 mg/kg)
solution.Micewere then transcardially perfused through the left ventri-
cle with 30 mL of phosphate-buffered saline (PBS), 1 μL/mL Heparin
and 2 mMProHance at a flow rate of 1.0 mL/minute. This was followed
by infusion of 30 mL 4% paraformaldehyde (PFA) and 2 mM ProHance
at 1.0 mL/minute for fixation. After perfusion, the head along with
skin, lower jaw and ears were removed in order to isolate the brain,
still in the skull. Following dissection, skulls were placed in individual
vials of 4% PFA and 2 mM ProHance solution overnight at 2 °C. After
at least 24 hours, skulls were transferred to a solution of 4% PFA,
0.02% sodium azide and 2 mM ProHance.
Ex-vivo MR imaging

Amulti-channel 7.0 Tesla, 40 cmdiameter boremagnetMRI scanner
(Varian Inc. Palo Alto, CA) was used to acquire images of mouse brains.
Brains were intact in their skulls and placed in Fluorinert, and 16
samples were scanned at one time in a 16-coil solenoid array. Parame-
ters used were: a T2-weighted 3D fast spin-echo sequence, with TR =
2000 ms, echo train length = 6, TEeff = 42 ms, field-of-view = 25 ×
28 × 14 mm and matrix size = 450 × 504 × 250 (Cahill et al., 2012;
Lerch et al., 2011a).
In-vivo MR imaging

We used manganese enhanced MRI (MEMRI) to measure neuro-
anatomical changes within mice occurring across 2 consecutive
days. Mice were injected intraperitoneally with 30 mM manganese
chloride (MnCl2) solution in fractionated doses (0.4 mmol/kg): one
half of the total dose at 18 hours and the second half at 17 hours be-
fore the first scan. Mice were scanned 7 at a time in separate transmit/
receive coils two times, 24 hours apart. Prior to each scan, mice were
anaesthetized with 4% isoflurane and placed within the magnet bore
for imaging. Mice were maintained at a body temperature of 35 °C on
1% isoflurane. Mn-enhanced images were acquired using a spoiled gra-
dient echo sequence with TR = 0.1 s, TE = 3.7 ms, flip angle = 55°,
field-of-view = 35 × 21 × 21 mm, matrix size = 280 × 168 × 168,
and two averages for a total of 1 hour and 34 minutes scan time.
Post-scanning, mice were transferred to a heated cage to allow for
recovery from the anaesthetic.
Image registration and measures of hippocampal volume

In-vivo and ex-vivo images were analyzed separately. In each case
a fully automated image registration based pipeline was used to align
all scans into spatial correspondence (Lerch et al., 2011a). A digital
atlas was then used to compute volumes for 62 separate structures
in the brain (Dorr et al., 2008). The volume of the hippocampus,
defined to include CA1, CA2, and CA3, was used as the main outcome
measure. For the ex-vivo data, hippocampal volume was normalized
and measured as a percentage of whole brain volume; for the
in-vivo data, the difference in volume (as a percentage of brain
volume) between adjacent scan days (i.e. day 78 minus day 77) was
computed.
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Statistical analysis

For the ex-vivo data, estrous stage was treated as an ordered
factor based on reported estradiol and progesterone levels (estrus b

metestrus b diestrus b proestrus) (McLean et al., 2012; Spencer et
al., 2008a,b), and a linear model with F(3, 35) degrees of freedom
used to assess the relation between hippocampal volume and cycle
stage. For the in-vivo data, the transition between stages (i.e. metes-
trus to diestrus) for each mouse on the 2 scan days was determined.
Mice grouped into four possible categories: (1) starting in an hypoth-
esized high hippocampal volume stage of the estrous cycle (proestrus
and diestrus) and remaining in a presumed high hippocampal volume
stage, (2) starting in a high hippocampal volume stage and going to
low hippocampal volume stage (estrus and metestrus), (3) starting
in a low volume stage and remaining in a low volume stage, and
(4) starting in a presumed low volume stage and transitioning to a
high volume stage. A Welch two sample t-test with 10.2 degrees of
freedom assessed whether volume changed when going from a
hypothesized high to low volume stage versus moving from an
hypothesized low to high volume stage. For the behavioral data,
differences in proportions of mice using a place or response strategy
in each stage of the estrous cycle was assessed using a χ2 test with
3 degrees of freedom.
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Results

Behavior

There was no difference by estrous stage in the number of trials
needed to reach criteria (p = 0.78, Fig. 2a). The probe trial revealed
a significant difference in the proportion of mice using a place strategy
(p = 0.03, Fig. 2b). There was perfect consistency between raters on
assessing navigation strategy on the probe trial (10/10).

Hippocampal volume

Hippocampal volume, as assessed by high-resolution ex-vivo MRI,
was significantly related to estrous cycle stage (p = 0.004, Fig. 2c),
with the maximum difference between adjacent stages reaching
2.8%. Hippocampal volume furthermore predicted navigation strategy
on the T-maze (p = 0.03), with larger volume predicting the use of a
place strategy and smaller volume the use of a response strategy.

Twenty different female mice were then imaged twice each
in-vivo and differences in hippocampal volume across the 24 hour
time period between adjacent scans computed. The difference in
hippocampal volume across 24 hours increased when going from a
stage with low baseline hippocampal volume (estrus or metestrus)
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ty to solve the T-maze (p = 0.78). Nevertheless, the strategy used to solve the maze
(b). The estrous cycle stage each mouse was in further related directly to ex-vivo mea-
until proestrus (c). A separate cohort of mice was then imaged in-vivo and differences
ncreased when mice were in estrus/metestrus transitioning to diestrus/proestrus, and
bars are SEM.
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to high baseline hippocampal volume (proestrus or diestrus) and
decreased when transitioning from a baseline of high hippocampal
volume to low hippocampal volume. Total hippocampal volume
change in transitioning between stages, as measured by in-vivo
MRI, was 2.2% and was significant (p = 0.01, Fig. 2d).

Discussion

Here we show that hippocampal volume in female mice changes
during the estrous cycle, mirroring known alterations in steroids
across the cycle and relating directly to behavior. This constitutes
direct evidence that the mesoscopic anatomy of the brain is capable
of changing in ways detectable by MRI over short periods of time.

We used two separate experiments to relate hippocampal volume to
the estrous cycle. In the first experiment, a cohort of 39 young adult
female mice were tested on a T-maze to assess their propensity to use
a hippocampus-dependent place strategy to solve the maze. After
maze training, which takes approximately 30–45 minutes per mouse,
the stage of the estrous cycle was assessed, following which the animal
was sacrificed and the brains prepared for high resolution ex-vivo MRI.
This experiment allowed us to determine that, given a population of
young female mice, hippocampal volume differs dependent on the
estrous cycle. These differences follow known steroid levels, with
hippocampal volume lowest in the estrus phase, and as estradiol and
progesterone levels increase toward their peak in proestrus and
diestrus respectively so does hippocampal volume. These alterations
in hippocampal volume tie into behavior; we showed that mice in
estrus are most likely to use a response strategy to solve the T-maze
(as previously reported in rats (Korol and Kolo, 2002; Korol et al.,
2004)), with likelihood for using a place strategy increasingwith hippo-
campal volume and known presence of ovarian steroids during proes-
trus and diestrus.

The first experiment suggested that hippocampal volume changes
between the four stages of the estrous cycle. In the second experi-
ment we determined that changes in hippocampal volume across
the estrous cycle can be detected in-vivo and occur within a
24 hour period. We divided our mice into four groups based on
expected hippocampal volume on day 1 and day 2. We found that
hippocampal volume did indeed decrease between the two scans if
the mouse started in a stage with presumed high volume (proestrus
and diestrus) and transitioned to a stage with presumed low volume
(estrus and metestrus) whereas volume increased if going from
presumed low to high volume stages.

The effects of estrogen and to a lesser extent progesterone on the
hippocampus have been well studied at a cellular level, giving us im-
portant clues about the origin of the volume changes we have shown
here. The dominant, often reported morphological change is an ap-
proximately 30% increase in dendritic spines in rats in late proestrus
(when estradiol is high) compared to late estrus (when estradiol is
low) (Woolley, 1998; Woolley and McEwen, 1992, 1994). Alterations
in spine numbers in mice across the estrous cycle are not known,
though multiple synaptic markers (PSD-95, pAkt, Synpatophysin)
alter during the cycle (Spencer et al., 2008a) and an increase in estra-
diol results in greater numbers of multi-synaptic boutons and in
larger “mushroom” shaped spines (Li et al., 2004; Spencer et al.,
2008b). The alterations in synaptic markers are concentrated in area
CA1 of the hippocampus in rats, but appear to affect the entire hippo-
campus more evenly in mice (Spencer et al., 2008b). There is also
some suggestion that estradiol increases astrocyte volume (Spencer
et al., 2008b), though this is not as well replicated (Woolley, 1998).
In summary, the large alterations in spines and synapses that have
been well replicated in the rodent are highly likely to underlie the
volumetric changes we report using MRI.

The purported link between spines/synapses and mesoscopic
volume is well in line with the two previous studies that have linked
rodent MRI brain plasticity with cellular markers (Blumenfeld-Katzir
et al., 2011; Lerch et al., 2011a,b; Sagi et al., 2012). When we trained
mice on a water maze we were able to detect hippocampal volume
increases of ~3–4% which correlated with GAP-43, a marker of
neuronal process remodelling (Lerch et al., 2011b). Similarly, when
Blumenfeld-Katzir and colleagues trained rats on a water maze, alter-
ations in water diffusion properties were linked with changes in
astrocyte as well as synapse staining intensity in the hippocampal for-
mation (Blumenfeld-Katzir et al., 2011; Sagi et al., 2012). The 2–3%
increase in hippocampal volume reported in the current study,
where endogenous estrous cycling with its well established effect
on synapses likely drove the volumetric changes, further cements
the link between alterations at the level of neuronal and glial processes
and MR detectable volume.

There are a few caveats to our study in so far as our experimental
setup could subtly alter natural cycling and/or steroid levels in mice.
The food deprivation required for the behavioural testing might be dis-
ruptive as could, more severely, the anaesthesia involved in the in-vivo
MRI protocol. Indeed, in the in-vivo experiment, not allmice transitioned
to the next stage in the cycle, though this could also be due to each cycle
stage not necessarily being 24 hours long. We were therefore under-
powered to look at all possible stage transitions and thus grouped our
mice into two cycle stages (proestrus/diestrus with presumed high
steroid levels and hippocampal volume, and estrus/metestrus with
presumed low steroid levels and hippocampal volume) and transitions
between them. The experimental protocols, however, require food dep-
rivation and anaesthesia and thuswill unavoidably be disruptive to some
extent. A further caveat is that we did not measure steroid levels in indi-
vidual animals. The relation between cycle stage and steroid levels has
beenwell established, yet future work could break down variationwith-
in stages by correlating brain morphometry against each mouse’s estro-
gen and progesterone levels.

In summary, the experiment described above adds to our under-
standing of mesoscopic brain plasticity as follows:

• Mesoscopic brain plasticity can be rapid –we found the hippocampus
changes in volume within 24 hours.

• The fact that mesoscopic brain plasticity is rapid suggests that it may
be driven bymembrane-initiated signalling, since new gene products
from nucleus-initiated signalling take over 24 hours (Spencer-Segal
et al., 2012), and is related to dendritic spine maturation and synapse
numbers (Li et al., 2004; Spencer et al., 2008a).

• Brain shape is rapidly modified by endogenous neuromodulators
(i.e. ovarian steroids), as suggested by human imaging studies
(Protopopescu et al., 2008), as well as by the previously established
learning/training paradigms (Blumenfeld-Katzir et al., 2011; Lerch
et al., 2011b).

• The changes in hippocampal volume tightly relate to changes in
cognition. Previous data from our group showed that directed
spatial learning in a water maze grows the hippocampus if the
mice are forced to rely on distal spatial cues to find the escape
platform (Lerch et al., 2011b); in the current study, on the other
hand, endogenous signalling changes the volume of the hippo-
campus which in turn biases learning strategies when both a
place (hippocampal) or response (striatal) strategy are available.

Our work has important implications for neurocognitive investi-
gations using structural MRI to measure changes in the brain. Most
importantly, the fact that the brain can change so rapidly suggests
that examining changes in the brain within hours or days, as opposed
to the usual time period of weeks or months, could be promising. For
human imaging studies, where conventional longitudinal paradigms
designed to detect changes in the brain image every few weeks
or months, designing experiments examining short term changes
in the brain could be significantly more powerful, since isolating
changes to just the experimental manipulations as opposed to all
the other activities of daily living the subjects carry out will be
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significantly easier. As the methods used by the brain imaging commu-
nity become more sensitive, whether due to improved acquisition
methods at higher fields or better data analysis algorithms, we believe
that the brain will be found to be constantly but subtly changing in re-
sponse to endogenous (i.e. steroids) as well as external factors.
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