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SUMMARY

Memories are thought to be sparsely encoded in
neuronal networks, but little is known about why a
given neuron is recruited or allocated to a particular
memory trace. Previous research shows that in
the lateral amygdala (LA), neurons with increased
CREB are selectively recruited to a fear memory
trace. CREB is a ubiquitous transcription factor im-
plicated in many cellular processes. Which process
mediates neuronal memory allocation? One hypoth-
esis is that CREB increases neuronal excitability to
bias neuronal recruitment, although this has not
been shown experimentally. Here we use several
methods to increase neuronal excitability and show
this both biases recruitment into the memory trace
and enhancesmemory formation. Moreover, artificial
activation of these neurons alone is a sufficient
retrieval cue for fear memory expression, showing
that these neurons are critical components of the
memory trace. These results indicate that neuronal
memory allocation is based on relative neuronal
excitability immediately before training.

INTRODUCTION

Although different brain regions may specialize in storing

different types of memories, computational and observational

findings suggest that only a small portion of neurons within a

given region is necessary to encode any particular memory (Gu-

zowski et al., 1999; Kanerva, 1988; Reijmers et al., 2007; Rolls

and Treves, 1990; Wilson and McNaughton, 1993). For instance,

it is generally agreed that the amygdala, in particular the lateral

nucleus of the amygdala (LA), is important for auditory fear (Da-
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vis, 1992; Duvarci and Pare, 2014; Fanselow and Gale, 2003;

Maren, 2003) or threat (LeDoux, 2014) conditioning, in which a

tone is paired with an aversive shock. However, while over

70% of pyramidal/principal neurons in the rodent LA respond

to both tone and shock presentation (suggesting these neurons

are ‘‘correctly wired’’ and therefore eligible to become part of the

memory trace), only a small portion (�10%–30%) of these

eligible neurons seem to be recruited into any one fear memory

trace (Han et al., 2007; Reijmers et al., 2007; Repa et al., 2001;

Rumpel et al., 2005). Similarly, there is evidence for a stable

sparse fear memory trace in the human amygdala (Bach et al.,

2011). Here we examine the mechanisms that help determine

which particular neurons are selected or allocated (Zhou et al.,

2009) to a sparsely encoded fear memory trace in the mouse LA.

Previously, we and others showed that LA neurons compete

against one another for allocation to a fear memory trace, and

furthermore that it was possible to bias the outcome of this

competition by manipulating CREB (cAMP/Ca2+ responsive

element binding protein) function in individual LA neurons. Neu-

rons with relatively higher CREB function were more likely to be

included, whereas neurons with relatively lower CREB function

were more likely to be excluded from the memory trace (Han

et al., 2007, 2009; Zhou et al., 2009). Importantly, the overall

size of the LA memory trace remained stable despite these

various CREB manipulations, and indeed did not vary with the

strength of the fear memory. This suggests that there is a limit

or constraint on the overall size of the LA fear memory trace.

Interestingly, decreasing CREB function in a small population

of random LA neurons did not disrupt memory formation. This

result is likely because the small population of neurons with

decreased CREB function was excluded from the memory trace

(which was composed of nonmanipulated neurons). In contrast,

increasing CREB function in a similar small portion of LA

neurons was sufficient to enhance memory formation (Han

et al., 2007). Together, these results suggest that neuronal

competition is important for neuronal allocation andmemory for-

mation, and that neurons with relatively higher CREB are
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competitively advantaged (and therefore, more likely to ‘‘win’’

this competition).

CREB is a ubiquitous transcription factor implicated in many

diverse cellular processes, including proliferation, survival, ap-

optosis, differentiation, metabolism, glucose homeostasis, and

neuronal excitability (Lonze and Ginty, 2002). For instance,

CREB bidirectionally modulates neuronal excitability (increasing

CREB function increases the propensity of neurons to fire action

potentials, while decreasing CREB function decreases neuronal

excitability) (Dong et al., 2006; Viosca et al., 2009; Zhou et al.,

2009). Which of these CREB-mediated processes is important

for neuronal allocation during memory formation? One plausible

mechanism is that neurons with high levels of CREB are prefer-

entially recruited to a memory trace because these neurons are

more excitable than their neighbors (a postsynaptic neuron

that is more excitable than its neighbor would be ‘‘primed’’ for

allocation into a given memory trace). Although an increase in

excitability has been proposed as a mechanism mediating

neuronal allocation during memory formation (Kim et al., 2013;

Zhou et al., 2009), this idea has not been directly tested experi-

mentally. Here we used three different methods to determine

whether relatively higher excitability before training confers a

competitive advantage for neuronal allocation to a fear memory.

RESULTS

HSV Microinjected into the LA Preferentially Infects
Excitatory Pyramidal/Principal Neurons
Tomanipulate excitability in a small, arbitrarily chosen subpopula-

tion of LA neurons, we used replication-defective herpes simplex

viral (HSV) vectors. To phenotype the type of LA cells infected by

HSV, we microinjected mice with HSV expressing GFP (to allow

for easy visualization of infected cells) into the LA and performed

immunohistochemistry for different cell markers (NeuN, neuronal

nuclei, as a marker of neurons; aCaMKII, alpha Ca2+/calmod-

ulin-dependent protein kinase II, as amarker of excitatory pyrami-

dal/principal neurons; GFAP, glial fibrillary acidic protein, as a

marker of astrocytes; and GAD67, glutamate decarboxylase 67,

as amarker of inhibitory neurons).We observed complete overlap

between LA cells infected by HSV (GFP+) and cells expressing a

neuronal marker (NeuN+), but no overlap between infected cells

and cells expressing GFAP, confirming that HSV is neurotropic

(Cole et al., 2012; Fink et al., 1996).Moreover, HSV predominantly

(�98%) infected pyramidal/principal excitatory (aCaMKII+) neu-

rons in the LA, with only a very small number (<2%) of infected

neurons costaining with the inhibitory neuronal marker GAD67

(Figures 1A and 1B). Therefore, consistent with previous reports,

we found that following microinjection into the LA, HSV preferen-

tially infects pyramidal/principal neurons (Cole et al., 2012).

Because of this tropism, we used HSV to manipulate excitability

in a portion of pyramidal/principal neurons in the LA.

Manipulating Neuronal Excitability Using
Voltage-Dependent K+ Channels
Neuronal excitability is determined by the composition, distribu-

tion, and properties of ion channels (e.g., Na+, K+, and Ca2+) in

the plasma membrane. Increasing CREB function increases

neuronal excitability, in part, by decreasing voltage-gated K+
currents (Dong et al., 2006; Lopez de Armentia et al., 2006;

Viosca et al., 2009; Zhou et al., 2009). This, in turn, inhibits the

postburst afterhyperpolarization (AHP, a hyperpolarizing current

which mediates the ‘‘undershoot phase’’ or refractory period

following an action potential). Two members of the voltage-

dependent K+ family of channels, KCNQ2 and related KCNQ3,

help mediate the AHP and function as molecular brakes on

neuron firing (Delmas and Brown, 2005; Gu et al., 2005). Expres-

sion of a dominant-negative KCNQ2 mutant (hQ2-G279S;

dnKCNQ2) coassembles with native KCNQ2/3 subunits, dis-

rupts their function, and thereby increases neuronal excitability

(Peters et al., 2005; Schroeder et al., 1998; Wuttke et al.,

2007). We observed that LA neurons in adult mice endogenously

express KCNQ2-containing channels (Figure 1C), suggesting

that expression of the dnKCNQ2 construct could be a viable

method for increasing excitability in LA neurons. To test this,

we first transfected primary hippocampal neurons with the

dnKCNQ2 construct. The dnKCNQ2 construct was also

observed near the axon initial segment (Figure 1D), consistent

with the notion that dnKCNQ2 coassembles with, and blocks

the function of, endogenous KCNQ2/3 channels. Therefore, as

our first method to increase excitability without directly manipu-

lating CREB function, we used HSV vectors to express

dnKCNQ2. To decrease excitability without directly decreasing

CREB function, we used HSV to express Kir2.1, an inwardly

rectifying K+ channel, which reduces neuronal input resistance

and decreases evoked action potential firing (Dong et al., 2006).

To verify that expression of our excitability constructs indeed

manipulated neuronal excitability, we assessed excitability (as

measured by firing rate) of cultured hippocampal neurons trans-

fected with GFP, CREB, dnKCNQ2, Kir2.1, and CREB+Kir2.1

constructs. Consistent with previous reports, we found that

expression of dnKCNQ2 (Peters et al., 2005) or CREB (Dong

et al., 2006; Han et al., 2006; Lopez de Armentia et al., 2006;

Viosca et al., 2009; Zhou et al., 2009) increased excitability, while

Kir2.1 decreased (Dong et al., 2006) excitability. Moreover, the

CREB-induced increase in excitability was blocked by coex-

pression with Kir2.1 in the same neurons (Figure 2A; one-way

ANOVA on firing rate of transfected/not-transfected neurons

with between-group factor Transgene [GFP, CREB, dnKCNQ2,

Kir2.1, and CREB+Kir2.1], F4,28 = 7.18, p < 0.001, posthoc New-

man-Keuls tests showed that dnKCNQ2 and CREB increased

excitability over GFP, whereas CREB+Kir2.1 condition was not

different from GFP). To confirm that HSV-CREB and HSV-

dnKCNQ2 increased excitability in infected LA neurons, we

also assessed excitability in ex vivo LA slices following microin-

jection of HSV expressing GFP, CREB, or dnKCNQ2 into mice.

LA neurons overexpressing dnKCNQ2 or CREB showed higher

firing rates than LA neurons expressing GFP (Figure 2B; one-

way ANOVA conducted on firing rate of infected/not-infected

neurons with between-group factor Vector (GFP, CREB, and

dnKCNQ2), F2,21 = 4.15, p < 0.05, LSD posthoc tests showed

that both neurons with dnKCNQ2 or CREB fired more action po-

tentials than neurons expressing GFP and did not differ from

each other). Therefore, although we did not directly determine

excitability following our manipulations in vivo, results from cell

culture and ex vivo LA neuron slices confirm previous reports

that dnKCNQ2 and CREB enhance excitability.
Neuron 83, 722–735, August 6, 2014 ª2014 Elsevier Inc. 723



Figure 1. Using Replication-Defective HSV Viral Vectors to Manipulate Neuronal Excitability

(A and B) Following microinjection into the LA, HSV vectors preferentially infect pyramidal/principal neurons. Mice were microinjected with HSV expressing GFP

into the LA, and 4 days later infected cells were phenotyped using immunohistochemistry for various cell markers. Example images from 4 days postinjection

(dpi). (A) DAPI (blue, nuclear stain), GFP (green, infected cell), various cell markers (red). Top: NeuNwas used as amarker of neurons. All infected cells (GFP+) were

neurons (also NeuN+). Bottom: aCaMKII was used as a marker of excitatory pyramidal/principal neurons. The vast majority of infected cells (roughly 98%) were

excitatory pyramidal neurons (also aCaMKII+). (B) Top: we found no (0%) HSV-infected cell that coexpressed endogenous markers typical of astrocytes (GFAP,

glial fibrillary acidic protein) and (bottom) only very rare HSV-infected cells that coexpressed inhibitory neurons (GAD67, glutamate decarboxylase 67) (roughly

1.7%). Detailed quantification cell phenotype infected by HSV-GFP in six mice shows that following microinjection into the LA, HSV overwhelmingly infects

excitatory pyramidal neurons.

(C) Endogenous KCNQ2 is widely expressed in adult mouse brain neurons (including LA) and localized to cell body and proximal parts of neurites (near axon initial

segment). Left: low-power (upper panel) and high-power (lower panel) immunofluorescence images of adult mouse brain stained with antibody directed against

KCNQ2 (red). Middle (upper and lower panels): MAP2 (microtubule-associated protein 2, neuronal cytoskeletal protein, green) used to visualize dendritic pro-

cesses. Right (top panel): Sections were counterstained with DAPI (blue) to visualize nuclei. Lower panels: higher-power images showing KCNQ2 (upper, red) and

MAP2 (middle, green) staining. Bottom panel: triple labeling shows KCNQ2 localized to cell body and proximal parts of neurites, as expected.

(D) Left: primary hippocampal neurons transfected with dnKCNQ2 vector that also expresses GFP (GFP, gray; KCNQ2, red). Right: magnification of transfected

neuron shows increased KCNQ2 protein (KCNQ2, red) in the cell body and proximal parts of neurites, as expected. Red arrow points to transfected neuron,

depicting that dnKCNQ2 is localized to correct neuronal region. White arrows point to representative nontransfected neurons and the endogenous KCNQ2

expression. Data presented are mean ± SEM.
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Memory-Enhancing Effects of Increasing CREB Levels
in a Small Portion of LA Neurons Are Mimicked by
dnKCNQ2 and Blocked by Coexpression of Kir2.1
We previously showed that increasing CREB function in a small,

random population of LA neurons by microinjecting HSV-CREB

was sufficient to enhance conditioned fear memory formation,

and that these neurons overexpressing CREB were selectively

allocated to the fear memory trace (Han et al., 2007, 2009).

To examine if the memory-enhancing effects of CREB overex-

pression in these experiments could be attributed to CREB

increasing neuronal excitability, we microinjected HSV vectors

expressing GFP (as a control), CREB (to increase excitability),

dnKCNQ2 (to increase excitability), Kir2.1 (to decrease excit-
724 Neuron 83, 722–735, August 6, 2014 ª2014 Elsevier Inc.
ability), or CREB+Kir2.1 (to counteract the increase in excitability

produced by CREB) into the LA 2 days before weak auditory fear

conditioning (in which a tone conditioned stimulus [CS] was

paired with low-intensity, 0.3 mA shock). Importantly, following

microinjection, these viral microinjections infect roughly 10% of

LA principal neurons (as determined by stereological counting),

and the pattern of infection appears random (Figure 2C; see Sup-

plemental Experimental Procedures). In agreement with previ-

ous findings (Han et al., 2007, 2009; Rexach et al., 2012; Zhou

et al., 2009), we observed that increasing CREB in a small portion

of LA neurons enhanced memory formation (Figure 2D).

Similarly, expressing dnKCNQ2 in roughly 10% of LA neurons

produced a memory enhancement that was strikingly similar to



Figure 2. Increasing Intrinsic Excitability by Overexpressing CREB or dnKCNQ2 in a Small, Random Portion of LA Principal/Pyramidal Neu-

rons Enhances Fear Memory Formation; Neurons with Relatively Higher Excitability Are Preferentially Allocated to this Fear Memory Trace

(A) Primary hippocampal neurons transfected with CREB or dnKCNQ2 construct show increased firing rates (relative to not-transfected neighboring neurons),

whereas neurons transfected with GFP show no increase in firing. Neurons expressing Kir2.1 show decreased firing rates, whereas neurons coexpressing both

CREB and Kir2.1 are not different from neurons expressing GFP. Left: example traces from injecting 120 pA current. Right: quantification. GFP n = 7 neurons,

CREB n = 6 neurons, dnKCNQ2 n = 12 neurons, Kir2.1 n = 6 neurons, CREB+Kir2.1 n = 2 neurons.

(B) Ex vivo LA neurons frommicemicroinjected with CREB or dnKCNQ2 vector show increased firing rates relative to not-infected neurons (or neurons expressing

GFP control vector, which do not show differences from not-infected neighbors). Left: example traces. Right: quantification. GFP n = 9 neurons, CREB n = 7

neurons, dnKCNQ2 n = 8 neurons.

(C) Microinjecting HSV vector infects �10% of LA principal neurons (based on stereological counting). Example image from mouse brain 4 days postinjection

(dpi). DAPI (blue, nuclear stain), GFP (green, infected neuron). LA outlined with dotted line.

(D) Expressing CREB or dnKCNQ2 vector in a small portion of LA principal neurons 2 days before weak auditory fear conditioning enhances fear memory for-

mation. Expressing Kir2.1 vector in a similar portion of neurons does not affect fear memory. However, the memory enhancement produced by CREB vector was

prevented by coexpressing Kir2.1 in the same neurons. GFP vector n = 7 mice, CREB n = 7 mice, dnKCNQ2 n = 15 mice, Kir2.1 n = 10 mice, CREB+Kir2.1 n = 8

mice.

(E) Neurons are allocated to the memory trace based on relative excitability. In mice microinjected with CREB or dnKCNQ2 vector, infected neurons were more

likely to be part of the memory trace (active arc+ neurons assessed 5 min after the memory test) than their noninfected neighbors. In mice microinjected with GFP

vector, infected neurons were equally likely to be arc+, while in mice microinjected with Kir2.1 vector, infected neurons were less likely to be arc+ than their

noninfected neighbors. Left: example images. DAPI (blue, nuclear stain), arc+ (red, active neuron following memory test), GFP (green, infected neuron). Right:

quantification of images. GFP vector n = 8 sections from 5 mice, CREB n = 8 sections from 5 mice, dnKCNQ2 n = 14 sections from 6 mice, Kir2.1 n = 4 sections

from 4 mice. Data presented are mean ± SEM. n.s., not statistically different.
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that observed following CREB overexpression. However, coex-

pression of CREB and Kir2.1 in the same LA neurons blocked

the memory enhancement produced by CREB vector alone

(one-way ANOVA, F4,42 = 14.75, p < 0.001, mice microinjected

with CREB or dnKCNQ2 vector froze more than mice with GFP

vector, but were not different from each other; mice microin-

jected with CREB+Kir2.1 vector froze less than mice with

CREB vector alone, but were not different from mice with GFP

vector [posthoc Newman-Keuls]).

The Memory-Enhancing Effects of Increasing CREB or
Blocking KCNQ2 Function Are Behaviorally Specific
These results suggest that increasing excitability in a small

portion of LA neurons before fear conditioning enhanced the
formation of a fear memory. To more thoroughly examine this

effect, we conducted a series of control experiments. First, we

examined the phase of memory which was important in the

memory enhancement produced by CREB or dnKCNQ2 expres-

sion. To determine whether the higher freezing during the tone

test observed in mice microinjected with HSV-CREB or HSV-

dnKCNQ2 was due to an effect on acquisition or expression of

conditioned fear memory, we microinjected our viral vectors

1 day after training (rather than 2 days before training). As a con-

trol for the possible effects of surgery, we compared freezing

levels on the test day to no-surgery control mice. We observed

that microinjecting our viral vectors 1 day after either weak (0.3

mA shock) or strong (0.6 mA shock) training did not affect

freezing levels during the tone test (Figure 3A; strong training,
Neuron 83, 722–735, August 6, 2014 ª2014 Elsevier Inc. 725



Figure 3. The Memory Enhancement Produced by Overexpressing CREB or dnKCNQ2 in the LA Prior to Fear Conditioning Is Specific

(A) Microinjecting CREB or dnKCNQ2 vector after strong or weak training has no effect on expression of a previously acquired fear memory. Strong training; GFP

n = 10 mice, CREB n = 11, dnKCNQ2 n = 11, no surgery n = 8. Weak training; GFP n = 8, CREB n = 8, dnKCNQ2 n = 8, no surgery n = 8.

(B) Microinjecting CREB or dnKCNQ2 vector 11 days before weak auditory fear conditioning (such that mice were trained after transgene expression dissipated)

does not enhance memory. n = 8 mice per group. Right: little to no LA transgene expression 10 days postinjection (dpi, bottom) compared to high levels of

transgene expression 4 dpi (top).

(C) Microinjecting CREB or dnKCNQ2 vector 2 days before weak auditory fear conditioning produces an enduring memory enhancement that outlasts transgene

expression. n = 8 mice per group.

(D) Microinjecting CREB vector into the central amygdala (CeA) or basal amygdala (BA) 2 days before weak auditory fear conditioning fails to enhance memory,

showing that the memory enhancement is anatomically specific. LA, GFP n = 7; CeA, CREB n = 8; and BA, CREB n = 8. Data presented are mean ± SEM. n.s., not

statistically different.
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F3,36 = 0.52, p > 0.05; weak training, F3,28 = 0.81, p > 0.05). These

findings indicate that increasing excitability in a small subset of

LA neurons did not increase freezing by enhancing the expres-

sion of a previously acquired fear memory. Instead, these results

are consistent with the interpretation that CREB and dnKCNQ2

enhanced the formation of a fear memory.

Second, we asked when an increase in neuronal excitability

resulted in enhanced fear memory. Transgene expression using

this HSV system begins hours following microinjection, peaks

within 2–3 days later, and dissipates within 7–12 days (Figure 3B,

right) (Sekeres et al., 2012). We took advantage of this transgene

expression time course by microinjecting CREB or dnKCNQ2

vectors 11 days before training (such that mice were trained at

a time when the transgenes were no longer expressed). Microin-
726 Neuron 83, 722–735, August 6, 2014 ª2014 Elsevier Inc.
jecting dnKCNQ2 or CREB vector 11 days before training had no

effect on subsequent memory formation, suggesting that the

enhanced memory was dependent on increased neuronal excit-

ability at the time of training (Figure 3B, left; F2,20 = 0.09, p > 0.05).

Third, we examined the duration of memory enhancement

produced by CREB or dnKCNQ2 vector. We found that the

memory enhancement produced by high levels of CREB or

dnKCNQ2 at the time of training (mice were microinjected with

vectors 2 days before training) was enduring and even continued

beyond transgene expression (14 days after microinjection) (Fig-

ure 3C; F2,21 = 8.44, p < 0.05, mice microinjected with CREB or

dnKCNQ2 vector continued to freeze higher than mice microin-

jected with GFP vector [but did not differ from each other] even

14 days following microinjection [Newman-Keuls]). Finally, we



Figure 4. Overexpressing CREB or dnKCNQ2 in the LA Does Not Increase Overall Anxiety-like Behavior

(A–G) Increasing excitability by overexpressing CREB or dnKCNQ2 in a random small portion of LA neurons does not impact basal anxiety-like behavior as

assessed in the open field (A–C) or elevated plus maze (D–G). We observed no effect of microinjecting CREB or dnKCNQ2 vectors into LA on open-field behavior

(either total distance traveled [B] or time spent in outer, middle, and inner zone [C]). GFP vector n = 9 mice, CREB n = 8mice, dnKCNQ2 n = 9 mice. We observed

no effect of microinjecting excitability vectors into the LA on elevated plus maze behavior (time in open versus closed arms [E], crossings in open versus closed

arms [F], or total distance traveled [G]). GFP vector n = 8 mice, CREB n = 5 mice, dnKCNQ2 n = 6 mice. Data presented are mean ± SEM. n.s., not statistically

different.
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examined the anatomical specificity of the memory enhance-

ment induced by overexpression of CREB. To this end, we mi-

croinjected CREB vector into the neighboring basal amygdala

(BA) or central amygdala (CeA) 2 days prior to training. We

observed no memory enhancement with CREB overexpression

in these neighboring amygdala nuclei (Figure 3D; one-way

ANOVA conducted on three groups, GFP vector in LA, CREB

vector in CeA, or CREB vector in BA, F2,20 = 2.58, p > 0.05), sug-

gesting that the memory-enhancing effects of CREB over-

expression are anatomically specific. Together, these results

indicate memory formation was enhanced if, and only if, CREB

or dnKCNQ2 was expressed in a small population of LA neurons

at the time of training. Once formed, however, this enhanced

memory endured and no longer required continued overexpres-

sion of CREB or dnKCNQ2.

Although we observed no difference in baseline (pretone)

freezing in our experiments (Figures S1A–S1D available online),

we next asked whether increasing excitability in a small portion

of LA neurons enhanced freezing during the tone test by nonspe-

cifically increasing overall basal anxiety-like behavior. Wemicro-

injected CREB or dnKCNQ2 vector into the LA 2 days before

testing in the open field (Figure 4A) or on an elevated plus

maze (Figure 4D). In the open field, a decrease in total distance

traveled and/or an increase in time spent in the periphery of the

open field are commonly used phenotypic markers of anxiety-

like behavior in rodents (Crawley et al., 1997; Prut and Belzung,
2003). Neither CREB nor dnKCNQ2 vector decreased total dis-

tance traveled (Figure 4B; F2,23 = 0.07, p > 0.05) or increased

the amount of time spent in the periphery of the open field (Fig-

ure 4C; no significant effect of Vector X Zone [time spent in outer,

middle, and inner zones of the open field], F4,46 = 0.03, p > 0.05;

or Vector, F2,23 = 0.89, p > 0.05; but as expected, significant ef-

fect of Zone, F2,46 = 72.96, p < 0.001, with all groups ofmice tend-

ing to spendmore time in the outer zone). Anxiety-like behavior in

the elevated plus maze is often inferred from a decrease in the

time spent in the open arm and/or a decrease in the number of

open arm crossings (Pellow and File, 1986; Rodgers and Dalvi,

1997). Consistent with our findings using the open-field test, mi-

croinjecting CREB or dnKCNQ2 vector did not increase the

amount of time spent in the open versus closed arms (Figure 4E;

no significant Vector X Arm interaction, F2,16 = 1.32, p > 0.05; or

effect of Vector alone, F2,16 = 1.30, p > 0.05; as expected, signif-

icant effect of Arm with all groups tending to spend more time in

the closed arm, F1,66 = 214.12, p < 0.001), crossings in open

versus closed arms (Figure 4F; no significant Vector X Arm inter-

action, F2,16 = 1.25, p > 0.05; or effect of Vector alone, F2,16 =

1.69, p > 0.05; significant effect of Arm only, F1,16 = 29.12, p <

0.001), or total distance traveled (Figure 4G; F2,16 = 0.25, p >

0.05) in the elevated plus maze. These results verify that the in-

crease in freezing observed following microinjection of CREB

or dnKCNQ2 vectors in auditory fear conditioning cannot be

attributed to a nonspecific increase in anxiety-like behavior.
Neuron 83, 722–735, August 6, 2014 ª2014 Elsevier Inc. 727
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Neurons with Relatively Increased Excitability at the
Time of Training Are Preferentially Recruited/Allocated
to a Memory Trace
We observed robust memory enhancement despite infecting a

small population of LA neurons (�10%, roughly 16,000–20,000

neurons; see Supplemental Experimental Procedures) with

CREB or dnKCNQ2 vector, suggesting that these infected neu-

rons (with increased excitability) were preferentially allocated

to thememory trace. To examine this, we assessedwhether neu-

rons with CREB or dnKCNQ2 vector were overrepresented in the

memory trace. To visualize neurons that may be part of the fear

memory trace, we used cellular compartment analysis of tempo-

ral activity by fluorescent in situ hybridization (catFISH), a tech-

nique that takes advantage of the unique transcriptional time

course of the activity-dependent gene arc (activity-regulated

cytoskeleton-associated protein) (Guzowski et al., 1999, 2001).

Under basal, quiet conditions, neurons typically show no (or

very low levels of) arc RNA. Neural activity induces a rapid but

transient burst of arc transcription such that arcRNA is observed

in the nucleus within 5 min of neuronal activity. However, this arc

RNA is transported to dendrites such that roughly 40 min after

neuronal activity, neurons again show low levels of arc in the nu-

cleus. In this way, the spatial localization of arc RNA in a neuron

(nucleus, cytoplasm, both, or neither) may serve as a molecular

activity time stamp for any particular neuron, with arc localized

to the nucleus serving as a visual marker of a recently active

neuron. To identify infected neurons, we used the GFP ex-

pressed by our viral vectors.

Specifically, we examined the brains of mice 5 min following

a conditioned fear (tone) memory test and assessed the overlap

of active (arc+, neurons with arc localized to the nucleus) and

infected (GFP+) versus noninfected (GFP�) neurons in mice

microinjected with GFP, CREB, dnKCNQ2, or Kir2.1 vector

2 days before training. Consistent with our previous finding, we

observed that the overall size of the arc+ memory trace (number

of overall LA neurons that were arc+) was stable across experi-

ments, regardless of vector microinjected or memory strength

(F3,30 = 2.06, p > 0.05). However, the distribution of arc+ neurons

(in infected versus noninfected neurons) differed significantly

between vector groups.

In mice microinjected with either CREB or dnKCNQ2 vector,

infected neurons were three times more likely to be arc+ than

their noninfected neighbors following a memory test. This sug-

gests that these neurons with CREB or dnKCNQ2 were prefer-

entially recruited to the memory trace, paralleling our previous

findings with CREB vector (Han et al., 2007, 2009). The opposite

pattern emerged from mice microinjected with Kir2.1 vector; in-

fected neurons were over five times less likely to be arc+ than

noninfected neurons following a memory test (Figure 2E; Vector

(GFP, CREB, dnKCNQ2, Kir2.1) X Neuron Infection Status (in-

fected, noninfected) ANOVA, F3,30 = 18.78, p < 0.001, in mice

with GFP vector, there was no difference between the probability

of arc+ nuclei in infected versus noninfected neurons). Impor-

tantly, mice microinjected with Kir2.1 vector showed normal

memory (Figure 2D), suggesting that the majority of noninfected

neurons were sufficient to support normal memory. The relative

exclusion of neurons with Kir2.1 vector from the arc+ memory

trace (and normal memory) is strikingly similar to our previous
728 Neuron 83, 722–735, August 6, 2014 ª2014 Elsevier Inc.
finding in which we similarly microinjected a dominant-negative

CREB vector (HSV-mCREB). We previously observed that neu-

rons with mCREB were also less likely to be allocated to the

memory trace, but that mice microinjected with mCREB vector

showed normal memory (Han et al., 2007). It is of interest to

note that similar to Kir2.1, mCREB expression decreases

neuronal excitability (Dong et al., 2006; Han et al., 2006). These

findings support the notion that neurons are chosen for themem-

ory trace based on their relative excitability.

Interestingly, following a memory test, noninfected neurons

were less likely to be arc+ in mice microinjected with CREB or

dnKCNQ2 vector than in mice microinjected with GFP vector

(one-way ANOVA on the probability of noninfected neurons be-

ing arc+ in the three Vector groups [GFP, CREB, dnKCNQ2]

showed a significant difference, F2,27 = 11.87, p < 0.05; the likeli-

hood of noninfected cells being arc+ was lower in mice microin-

jectedwith CREB or dnKCNQ2 vector than inmicemicroinjected

with GFP vector [Newman-Keuls]). Together, these data are

consistent with the interpretation that neurons compete against

one another for inclusion in a memory trace, and that neurons

with relatively higher levels of excitability are more likely to win

this competition. In addition, these winning neurons may also

actively inhibit ‘‘loser’’ neurons, to maintain the stability of the

overall size of the memory trace. Indeed, our experimental

data were correctly forecast in an elegant modeling study (Kim

et al., 2013), which showed that neuronal competition for mem-

ory allocation involves both relative neuronal excitability and a di-

synaptic inhibition process.

Using Genetically Encoded Mediators of Neural
Excitability to Transiently IncreaseExcitability in a Small
Portion of LANeurons before, but Not Immediately after,
Training Enhances Fear Memory Formation
In the above experiments, we used HSV to express different

transgenes that affect excitability. Due to the nature of transgene

expression using the present HSV vector, mice were trained and

tested with high levels of transgene expression. As such, these

experiments do not address precisely when an increase in neural

excitability is important in the observed memory enhancement.

To gain finer temporal control over neuronal excitability, we

used two different systems to genetically manipulate neural

excitability over a relatively brief time. First, we used HSV to ex-

press the DREADD (designer receptors exclusively activated by

designer drug) hM3Dq. hM3Dq is an evolved Gq-coupled

muscarinic receptor, which has no constitutive activity and

does not bind to the endogenous ligand (ACh) (Armbruster

et al., 2007; Nichols and Roth, 2009). However, binding of the

synthetic ligand, clozapine-N-oxide (CNO, an otherwise phar-

macologically inert compound), to hM3Dq receptors increases

neuronal excitability (Armbruster et al., 2007; Nichols and Roth,

2009). We first verified this in cultured hippocampal neurons.

Specifically, we found that neurons transfected with hM3Dq

show increased excitability only in the presence of CNO, and

that CNO without the hM3Dq receptor did not alter excitability

(Figure 5A; two-way ANOVA on membrane potential as a mea-

sure of excitability, with within-group factor CNO Application

[before versus after CNO application] and between-group factor

Transfection [transfected with hM3Dq versus untransfected]



Figure 5. Using hM3Dq DREADD to Increase Neuronal Excitability

(A) Primary cultured hippocampal neurons transfected with hM3Dq (but not neighboring untransfected neurons) show depolarization only after (and not before)

CNO administration. hM3Dq construct, n = 5 neurons; untransfected, n = 5 neurons.

(B) LA neurons infected with hM3Dq vector show increased activity (cFos expression) following systemic injection of CNO. Mice microinjected with hM3Dq or

GFP vector were not trained but received systemic administration of CNO or VEH. cFos immunohistochemistry was examined 90 min later, and the number of

infected neurons positive for cFos was quantified. hM3Dq vector + CNO administration n = 6mice, hM3Dq+VEH n = 5mice, GFP+CNO n = 4mice, GFP+VEH n =

4 mice. Data presented are mean ± SEM. n.s., not statistically different.
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revealed a significant interaction, F1,8 = 8.78, p < 0.05, as well as

significant main effect of Transfection, F1,8 = 8.56, p < 0.05, and

CNO Application, F1,8 = 6.44, p < 0.05; post hoc Newman-Keuls

tests performed on the significant interaction revealed that neu-

rons transfected with hM3Dq were significantly more excitable

after CNO administration, while all other groups did not differ).

In addition, in mice microinjected with hM3Dq vector into the

LA, we observed an increase in expression of an activity marker

in infected neurons only following systemically administered

CNO. Specifically, neurons with hM3Dq vector had higher levels

of cFos expression, a marker of neuronal activation (Morgan and

Curran, 1991), only following administration of CNO, while CNO

on its own produced no effect in neurons with the control GFP

vector (Figure 5B; significant Vector X CNO Injection interaction,

F1,15 = 5.11, p < 0.05; posthoc Newman-Keuls tests confirmed

that infected neurons showed a higher probability of being

cFos+ in the hM3Dq+CNO group than in all other groups, which

did not differ from each other).

To transiently increase excitability in a small (�10%), random

portion of LA principal neurons, specifically in theminutes before

(and during) fear training, we microinjected hM3Dq (or GFP) vec-

tor as above (2 days before training), and systemically adminis-

tered CNO (or vehicle [VEH]) before weak fear training. Mice

were tested 24 hr later, drug free (in the absence of CNO). In

this way, neuronal excitability was increased only in the minutes

before training. During the memory test, we observed an in-

crease in freezing only in mice microinjected with hM3Dq vector

and administered CNO before training. We observed nomemory

enhancement by administration of CNO alone (in mice with GFP

vector) or expression of hM3Dq alone (in mice administered

VEH). Therefore, increasing neuronal excitability in a random,

small subset of neurons before training was sufficient to enhance

memory formation (Figure 6A; Vector X CNO Injection, F1,29 =

8.57, p < 0.05; mice microinjected with hM3Dq vector and

administered CNO before training froze more than all other

groups [Newman-Keuls]). Importantly, administering CNO

immediately after training failed to enhance memory in mice mi-

croinjected with hM3Dq vector (Figure 6B; no significant effect of

Vector, CNO Injection, or Vector X CNO Injection interaction,
F1,28 = 0.22, p > 0.05). This finding suggests that increased

neuronal excitability at the time of memory encoding, rather

than during consolidation, determines the strength of memory

formation.

To examine whether this small portion of LA neurons that had

increased excitability only during theminutes before training was

preferentially allocated to thememory trace, we used catFISH for

arc RNA following a memory test (as above). Before this memory

test, no CNO was administered. Specifically, we microinjected

mice with hM3Dq vector, administered CNO or VEH prior to

training, and 5 min following a drug-free memory test, examined

the overlap of arc (to identify neurons in the memory trace) and

GFP (to identify infected neurons). In mice administered CNO

before training, hM3Dq-expressing neurons were 3.8 times

more likely to be included in the memory trace than their nonin-

fected neighbors, whereas hM3Dq-expressing and noninfected

neighboring neuronswere equally likely to be arc+ in mice admin-

istered VEH before training (Figure 6C; CNO Injection X Neuron

Infection Status, F1,18 = 14.52, p < 0.05, in mice microinjected

with hM3Dq vector and administered CNO, infected neurons

were more likely to be arc+ than noninfected neurons; however,

infected and noninfected neurons were equally likely to be arc+ in

mice microinjected with hM3Dq vector but administered VEH

[Newman-Keuls]). This result parallels the findings frommice mi-

croinjected with CREB or dnKCNQ2 vector, and suggests that

neurons with increased excitability in the minutes before (and

during) training are preferentially allocated to the memory trace.

Synthetic Activation of Neurons Allocated to a Memory
Trace Is Sufficient to Serve as a Retrieval Cue
To determine whether these neurons with increased excitability

at the time of training became critical components of thememory

trace, we next asked whether artificial activation of just these

neurons was sufficient to serve as a memory retrieval cue. In

our previous experiments, we probed conditioned fear memory

by placing mice in a novel context and presenting an external

retrieval cue (presentation of the tone CS that was paired with

shock during training). In this experiment, however, we microin-

jected mice with hM3Dq (or GFP) vector and administered CNO
Neuron 83, 722–735, August 6, 2014 ª2014 Elsevier Inc. 729



Figure 6. Increasing Excitability Using hM3Dq DREADD in a Small Portion of LA Neurons Immediately before, but Not Immediately after,

Training Enhances Fear Memory Formation; These Neurons Are Preferentially Allocated to Memory Trace; Artificial Reactivation of These

Neurons Alone Serves as a Sufficient Memory Retrieval Cue

(A and B) Transiently increasing excitability in a small portion of LA neurons before, but not after, training enhances fear memory formation. Microinjecting hM3Dq

vector 2 days before weak auditory fear conditioning and systemically administering CNO before, but not immediately after, (B) training enhances fear memory

formation. CNObefore training; GFP vector + CNOadministration n = 7mice, GFP+VEH n= 8mice, hM3Dq+CNOn= 10mice, hM3Dq+VEH n= 8mice. CNOafter

training; n = 8 mice for each group.

(C) In mice microinjected with hM3Dq vector, infected (GFP+) were more likely than noninfected neighbors (GFP�) to be allocated to arc+ memory trace if CNO

was administered before training. No difference between distribution of arc+ in infected and noninfected neurons in mice microinjected with hM3Dq vector but

administered VEH. CNO administered only before training (not before test). hM3Dq vector + CNO administration n = 15 sections from 8 mice, hM3Dq+VEH n = 5

sections from 5 mice.

(D) Artificially activating neurons that had increased excitability before strong training (hM3Dq+CNO) is sufficient to serve as amemory retrieval cue in the absence

of an external retrieval cue. Mice with hM3Dq vector administered CNO before training and again before a test in a novel context show higher levels of freezing

than control groups (left). However, all groups froze at equivalent levels when an appropriate external cue was replayed (middle, the tone previously paired with

shock). GFP vector + CNO administration n = 8 mice, GFP+VEH n = 8 mice, hM3Dq+CNO n = 8 mice, hM3Dq+VEH n = 8 mice. This enhancement in freezing

following CNO administration is specific to fear memory; we observed no increase in freezing in these mice when similarly microinjected with hM3Dq vector,

administered CNO, and placed in a novel context, but not trained (right, before tone-shock pairing). GFP vector + CNO n = 16 mice, hM3Dq+CNO n = 16 mice.

Data presented are mean ± SEM. n.s., not statistically different.
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to all groups before strong training. Rather than assessing mem-

ory by exposing mice to the tone (CS), we probed memory by

placing mice in a novel context following administration of

CNO (to reactivate the neurons that we hypothesize are part of

the memory trace) and measured freezing. Activation of these

hM3Dq-expressing neurons alone (without external tone

retrieval cue) was sufficient to induce freezing (Figure 6D, left;

Vector X CNO Injection at Test, F1,28 = 9.80, p < 0.05, mice

with hM3Dq vector administered CNO before test froze more

than all other groups [Newman-Keuls]). All groups froze at equiv-

alently high levels when an external cue (the tone previously
730 Neuron 83, 722–735, August 6, 2014 ª2014 Elsevier Inc.
paired with shock) was replayed during a subsequent memory

test (Figure 6D, middle; Vector X CNO Injection at Test, F1,28 =

0.37, p > 0.05), indicating that all groups were equally capable

of strongly expressing the memory if presented with a retrieval

cue that closely matched the training cue (Koutstaal et al.,

2001). Importantly, increased freezing was not observed if

mice with hM3Dq vector were administered CNO and placed

in a novel context before the training session, indicating that sim-

ply activating a small population of LA neurons alone does not

induce freezing (Figure 6D, right; no significant effect of Vector

[hM3Dq versus GFP] [all mice administered CNO before



Figure 7. Increasing Excitability in a Small

Portion of LA Neurons Using Optogenetics

Immediately before Training Enhances

Memory Formation

(A) Primary hippocampal neurons transfected with

ChR2 (but not neighboring untransfected neurons)

show depolarization during, but not before, illumi-

nation with a blue light. ChR2 construct, n = 9

neurons; untransfected, n = 4 neurons.

(B) Optogenetically activating a small portion of LA

neurons immediately before training enhanced

memory formation. GFP vector + no light n = 6

mice, GFP vector + light n = 6 mice, ChR2 vector +

no light n = 9mice, ChR2 vector + light n = 11mice.

Data presented are mean ± SEM. n.s., not statis-

tically different.
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training], F1,30 = 0.01, p > 0.05). These data support the interpre-

tation that nonspecifically increasing activity in a random, small

population of LA neurons (that are not part of the fear memory

trace) does not induce freezing. Instead, these results indicate

that artificially reactivating a key component of the fear memory

trace (those neurons with increased excitability at the time of

training) is sufficient to induce memory recall. The finding that

freezing was lower following artificial reactivation of a memory

trace than following exposure to the CS that predicted shock is

in keeping with the encoding specificity principle, which sug-

gests that memory retrieval is most effective when information

available at encoding is also present at retrieval (Tulving and

Thomson, 1973).

Using Optogenetic Mediators of Neural Excitability to
Transiently Increase Excitability in a Small Portion of LA
Neurons Immediately before Training Enhances Fear
Memory Formation
To gain further temporal precision over neuronal excitability, we

used HSV to express channelrhodopsin-2 (ChR2), a light-acti-

vated cation channel, in a small portion of LA neurons. When

activated by blue light, ChR2 induces depolarization (Deisseroth,

2011; Sparta et al., 2013; Tye and Deisseroth, 2012). We

confirmed this effect in cultured hippocampal neurons (Fig-

ure 7A; two-way ANOVA on membrane potential as a measure

of excitability with within-group factor Light [before versus dur-

ing] and between-group factor Transfection [transfected with

ChR2 versus untransfected] revealed a significant interaction,

F1,11 = 9.47, p < 0.05; posthoc Newman-Keuls tests revealed

there was no difference between untransfected hippocampal

culture depolarization before and during blue light; however,

neurons transfected with ChR2 showed significantly more depo-

larization during light).

We microinjected HSV expressing ChR2 or control GFP into

the LA of mice as above. Immediately before training (in which

a tone CS was paired with a 0.5 mA shock), we illuminated the

LA with blue (473 nm) light pulses (continuous train at 20 Hz light

pulses, with a 5ms pulse for 30 s immediately before tone-shock

pairing). Additional groups were similarly microinjected with

ChR2 or GFP vector but were trained with the light off. All mice

were given a tone test (without light) 24 hr after training. Optoge-

netically activating a small portion of LA neurons immediately
before training was sufficient to enhancememory formation (Fig-

ure 7B; Vector [ChR2 versus GFP] X Light condition immediately

before training (light versus no light) ANOVA showed a significant

interaction, F1,28 = 6.83, p < 0.05; only mice microinjected with

ChR2 and trained immediately after light on showed enhanced

memory; there was no difference in freezing levels between

mice with GFP vector in either the light or no-light condition or

mice with ChR2 vector in the no-light condition [Newman-

Keuls]). Together, these data support the conclusion that

increased neural excitability at the time of training mediates

memory formation and neuronal allocation to a memory trace.

DISCUSSION

Together, these experiments indicate that increasing excitability

(without directly manipulating CREB function) of a small, random

population (�10%) of LA pyramidal/principal neurons immedi-

ately before training was sufficient both to bias neuronal memory

allocation and enhance memory formation. Moreover, the mem-

ory-enhancing effect of increasing CREB function was pre-

vented by decreasing excitability specifically in these neurons.

Artificial reactivation of neurons that were highly excitable during

training subsequently served as a memory retrieval cue in the

absence of external retrieval cues, indicating that activation of

this small population of neurons was sufficient for memory

expression. Therefore, these results indicate that memory allo-

cation is at least partially based on relative neuronal excitability

at the time of training.

Our finding that increasing excitability in LA neurons mediates

neuronal fear memory allocation is also consistent with previous

findings examining avoidance learning in the piriform cortex

(Choi et al., 2011). Choi and colleagues used lentivirus to express

ChR2 in a random population of roughly 10% of excitatory neu-

rons in the piriform cortex. Optogenetic activation of this small

population of neurons was paired with a shock in an avoidance

paradigm. In a memory test, activation of these neurons alone

was sufficient to induce avoidance, suggesting that these neu-

rons were allocated to the avoidance memory trace, and that

subsequent activation of these neurons alone could serve as a

retrieval cue for this memory.

Our finding that neurons are recruited to a memory trace

based on neuronal excitability was predicted by a recent
Neuron 83, 722–735, August 6, 2014 ª2014 Elsevier Inc. 731
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biophysical modeling study. Kim and colleagues (Kim et al.,

2013) used a 1,000-LA-cell conductance-based model, which

mirrored the known relative composition of principal neurons

and interneurons in the LA. To test the prediction that neurons

were allocated to a memory trace based on their relative ex-

citability, principal neurons were randomly divided into three

categories that differed only with respect to their intrinsic excit-

ability (low, medium, or high excitability produced by differential

expression of K+ currents) and not to their initial type or number

of inputs. The network was trained (‘‘auditory fear conditioned’’)

and the proportion of principal neurons assigned to the low, me-

dium, or high excitability categories which showed plasticity to

the tone CS (neurons with increased CS responsiveness after

training, as a proxy of neurons recruited into the memory trace)

compared. Similar to our experimental results, this model found

a much larger proportion of plastic cells (analogous to our arc+

memory trace neurons) among the principal cells assigned to

the high excitability category (analogous to our neurons infected

with either CREB or dnKCNQ2 vector) than would be expected

by chance. Specifically, while only 1% of model LA neurons

with low excitability became part of the memory trace, over

40% of the more excitable neurons (medium and high excit-

ability) were allocated to the memory trace.

Here we observed that CREB and dnKCNQ2 expression not

only increased the likelihood that the infected neurons were

allocated to the memory trace, but these manipulations also

decreased the likelihood that noninfected neighboring neurons

were allocated to the memory trace. Consistent with this, we

observed that the overall size of the LA memory trace (neurons

arc+ after a memory test) did not vary with any of our manipula-

tions or level of freezing during the test. Indeed, we previously

showed that a similar size of memory trace supports both strong

and weak fear memories (Han et al., 2007). This finding indicates

that the strength of memory is not coded by number of neurons

in the LA fear memory trace. In addition, this observation implies

that although competition takes place between neurons with

high versus low intrinsic excitability, there is an additional form

of competition that may also play a critical role in neuronal allo-

cation to a memory trace. Kim et al. suggest that the substrate of

this additional form of competition is disynaptic inhibition. This

modeling study showed that the outcome of neuronal competi-

tion is alsomediated by the distribution of excitatory connections

between principal cells and the amount of disynatpic inhibition

they generate in other projection cells. That is, collections of prin-

cipal LA neurons band together to form a Hebbian ensemble,

which suppresses plasticity in other principal cells via the recruit-

ment of inhibitory interneurons.

Intrinsic excitability is regulated by several mechanisms (Ai-

zenman et al., 2003; Daoudal and Debanne, 2003), including

learning. Across several species, learning transiently increases

intrinsic excitability of some neurons (Alkon, 1974, 1984; Alkon

et al., 1985; Moyer et al., 1996; Oh et al., 2003; Thompson

et al., 1996) by downregulating K+ currents which mediate the

AHP (Saar et al., 2002). In the present experiments, we artificially

modified intrinsic excitability by overexpressing CREB, manipu-

lating K+ channel function, or using chemicogenetics or optoge-

netics. However, endogenous changes in intrinsic excitability are

linked to learning in a variety of species (from Hermissenda
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[Alkon, 1974] to rodents [Thompson et al., 1996]), suggesting

that the current manipulations, while artificial in nature, tap into

andmimic an endogenous underlying fundamental memory pro-

cess. Moreover, this process of neuronal allocation based on

relative excitability may also play a role in ‘‘preplay,’’ a recently

described phenomenon in which the emergence of hippocampal

place cell firing is predicted by neuronal activity patterns that

occur in the minutes before actual exposure to a novel spatial

context (Dragoi and Tonegawa, 2011, 2013).

EXPERIMENTAL PROCEDURES

Mice

Adult (<12 weeks of age) male and female F1 hybrid (C57BL/6NTac X 129S6/

SvEvTac) mice were used for all experiments, except where noted. All proce-

dures were conducted in accordancewith policies of the Hospital for Sick Chil-

dren Animal Care and Use Committee and conformed to both the Canadian

Council on Animal Care (CCAC) and NIH Guidelines on the Care and Use of

Laboratory Animals.

HSV Vectors

Wild-type full-length CREB (kindly provided by Dr. Satoshi Kida, Tokyo Univer-

sity of Agriculture, Tokyo, Japan), dnKCNQ2 (hKCNQ2-G279S, kindly provided

by Dr. Dirk Isbrandt, DFG Heisenberg Team Experimentelle Neuropädiatrie),

Kir2.1 (kindly provided by Dr. Eric Nestler, Mt. Sinai, NY), hM3Dq (kindly pro-

vided by Dr. Bryan Roth, University of North Carolina), and ChR2 (fused with

YFP, kindly provided by Dr. Karl Deisseroth, Stanford) cDNAs were subcloned

into an HSV vector backbone that coexpresses GFP as a fluorescent reporter

(HSV-p1005 [Russo et al., 2009]). Transgene expression using this viral system

typically peaks at 3 days, and dissipates within 7–12 days, following microin-

jection (Barrot et al., 2002; Cole et al., 2012; Josselyn et al., 2001; Vetere

et al., 2011). The average titer of the virus stocks was 4.0 3 107 infectious

units/ml. See Supplemental Experimental Procedures for details.

Surgery

Micewerepretreated (atropine sulfate 0.1mg/kg, i.p.), anesthetized (chloral hy-

drate, 400 mg/kg, i.p.), and viral vectors were infused (1.5 ml/side, 0.1 ml/min)

into the LA (AP = �1.45, ML = ± 3.45, V = �5.0 mm from bregma), CeA (AP =

�1.35, ML = ± 3.3, V = �5.3 mm from bregma), or BA (AP = �1.4, ML = ±

3.45, V = �5.5 mm) (Paxinos and Franklin, 2001). For the optogenetic experi-

ment,micewere similarlymicroinjectedwithHSV encodingChR2, and bilateral

optical fiberswere implanted slightly above each LA (Sparta et al., 2012; Stuber

et al., 2011).

Electrophysiology

Hippocampal Cultured Neurons

Low-density cultures of dissociated mouse hippocampal neurons were pre-

pared as previously described (Acton et al., 2012). After 10–15 days in culture,

neurons were transfected with DNA constructs (GFP, CREB, dnKCNQ2,

Kir2.1, CREB+Kir2.1). Electrophysiological recordings were performed on

both transfected and untransfected (control) neurons from the same culture

dish; transfected neurons were identified by GFP fluorescence. Neuronal

excitability was determined in current-clamp mode by injecting current in

10 pA steps from �50 pA to 150 pA.

To verify that hM3Dq expression increased neuronal excitability following

CNO, and that ChR2 expression increased excitability upon blue light applica-

tion, we estimated the change in the baseline membrane potential for neurons

transfected with these constructs (as well as untransfected controls) both

before and after CNO/light, respectively.

Acute Ex Vivo LA Slices

Mice (�4 weeks of age) were microinjected with viral vectors (GFP, CREB,

dnKCNQ2) into the LA, as above. After 1 day, brains were removed and placed

into chilled modified aCSF. Coronal slices (350 mM) containing the LA were

prepared. Recordings were obtained from infected neurons (identified by

GFP fluorescence in the LA) and their uninfected neighbors.
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Stereological Cell Counting

To determine the number of neurons infected by our viral microinjections, we

used unbiased stereological principles and systematic sampling techniques to

estimate the percentage of the total number of LA neurons infected by our viral

manipulations. See Supplemental Experimental Procedures for details.

cFos Immunostaining

To further verify that the DREADD hM3Dq increases neuronal activity in vivo

only following CNO administration, we examined cFos levels (as a marker of

neuronal activity) in infected cells. Mice were microinjected with hM3Dq or

GFP vector, and 2 days later these homecage mice were administered VEH

or CNO systemically. After 90 min, mice were perfused transcardially with

4% PFA. Brains were sliced coronally (50 mm) and incubated with antibodies

directed against cFos (Rabbit, K0306; 1:1,000, Calbiochem) and GFP

(Chicken, 1:1,000, Millipore). The number of infected neurons that were also

positive for cFos was assessed by two experimenters blind to the treatment

condition. See Supplemental Experimental Procedures for details.

Auditory Fear Training and Testing

Auditory Fear Conditioning

Fear conditioning training consisted of placing mice in a conditioning chamber

and 2min later presenting a tone (2,800 Hz, 85 dB, 30 s) that coterminated with

a shock (2 s, 0.3 mA = weak training; 2 s, 0.6 mA = strong training; 0.5 mA for

optogenetic experiment; Figure 7B). For the optogenetic experiment, the im-

planted optrodes were tethered to a laser source (473 nm; Laserglow) through

a split optic fiber (Precision Fiber Products) during conditioning. Light stimula-

tion, given for 30 s immediately preceding the tone, consisted of a 20 Hz train

of 5 ms pulses, and the average output light power was calibrated to 1 mW at

each fiber end.

Auditory Fear Testing

Testing for auditory fear conditioning occurred 24 hr after conditioning (except

where explicitly stated). Mice were placed in a novel chamber, and 2 min later

the tone CS was presented (for 1 min). The amount of freezing (defined as an

immobilized, crouched position, with an absence of any movement except

respiration [Blanchard and Blanchard, 1969; Bolles and Fanselow, 1982]) dur-

ing tone was assessed.

Statistical Analysis

Amount of freezing spent during the tone was compared across groups by

ANOVA. Where appropriate, significant effects were further analyzed using

Newman-Keuls or Fisher’s Least Square Difference (LSD).

Assessing Anxiety-like Behavior

Open Field

Mice were placed in an open field for 10 min, and total distance and amount of

time spent in the periphery were examined.

Elevated plus Maze

Mice were placed in the center of the maze, and behavior was monitored for

5 min. We analyzed time in open versus closed arms, crossings in open versus

walled (closed) arms, and total distance traveled. A decrease in open arm time

and/or open arm crossings is taken to reflect an anxiety-like phenotype.

catFISH or arc Fluorescent In Situ Hybridization for the Activity-

Dependent Gene arc

We identified neurons specifically activated by the fear memory test (and pre-

sumably part of the fear memory trace), and we used the cellular localization of

arcmRNA as amarker of neuronal activity, a technique that takes advantage of

the unique transcriptional time course of the activity-dependent gene arc (Gu-

zowski et al., 1999, 2001), as previously described (Han et al., 2007, 2009).

CNO

CNO (Toronto Research Chemicals [TRC]) was made in a stock solution of

10 mg/ml in DMSO and then diluted in saline to desired concentration. CNO

was injected at a dose of 2.0 mg/kg i.p., 15 min and 3 hr before training. For

the after-training (Figure 6B) and before-testing (Figure 6D) experiments, we

injected the same dose of drug.

Description of the experimental procedures is included in the Supplemental

Experimental Procedures.
SUPPLEMENTAL INFORMATION
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